Molarity/Dilutions Worksheet
Date:

1. Molarity Problems - Find the missing value.

Chemical
(a) $\mathrm{Na}_{2} \mathrm{SO}_{4}$

$$
\frac{16.0 \mathrm{~g}}{1} \times \frac{1 \mathrm{~mol}}{142.1 \mathrm{~g}} \times \frac{1}{0.05002}
$$

(b) $\mathrm{HCl} \quad 143.28 \mathrm{~g} \quad 0.924 \mathrm{~L} \quad 4.25 \mathrm{M}$

$$
\frac{143.28 \mathrm{~g}}{1} \times \frac{1 \mathrm{~mol}}{36.5 \mathrm{~g}} \times \frac{1 \mathrm{~L}}{4.25 \mathrm{~mol}}
$$

(c) $\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2} \quad 149 \mathrm{~g} \quad 150.0 \mathrm{~mL} \quad 3.00 \mathrm{M}$

$$
\frac{0,1500 \mathrm{~L}}{1} \times \frac{3,00 \mathrm{~mol}}{1 \mathrm{~L}} \times \frac{331.2 \mathrm{~g}}{1 \mathrm{~mol}}
$$

2. Dilution Problems
(a) 110.0 mL of 3.00 M sulfuric acid has 25.0 mL of water added to it. What is the resulting concentration of the solution?

$$
\begin{aligned}
& G_{1} V_{1}=C_{2} V_{2} \\
&(3.00 \mathrm{M})(110.0 \mathrm{~mL})=C_{2}(135.0 \mathrm{~mL}) \\
& C_{2}=2.44 \mathrm{M}
\end{aligned}
$$

(b) How much water must be added to 50.0 mL sample of 18.0 M nitric acid to give a resulting concentration of 0.250 M ?

$$
\begin{array}{ll}
C_{1} V_{1}=C_{2} V_{2} \\
(18.0 \mathrm{M})(50.0 \mathrm{~mL})=(0.250 \mathrm{M}) \mathrm{V}_{2} & 3600 \mathrm{~mL}-50.0 \mathrm{~mL} \\
& =3550 \mathrm{~mL}
\end{array}
$$

$$
V_{2}=3600 \mathrm{~mL}
$$

(c) Barium nitrate is purchased as a 17.0 M concentration. Explain how you would prepare 500.0 mL of a 5.00 M solution.

$$
\begin{aligned}
& C_{1} V_{1}=C_{2} V_{2} \\
& (7 . O M)\left(V_{1}\right)=(5100 \mathrm{M})(500.0 \mathrm{~mL}) \\
& V_{1}=147 \mathrm{~mL} \quad 500 \mathrm{~mL}-147 \mathrm{~mL}=353 \mathrm{~mL}
\end{aligned}
$$

- Take 147 mL of 17.0 M solution and add 353 mL of water.
(d) If 25.0 mL of $4.0 \mathrm{M} \mathrm{HNO}_{3}$ solution is diluted to a volume of 600.0 mL , what will be the molarity of the diluted solution?

$$
\begin{aligned}
& C_{1} V_{1}=C_{2} V_{2} \\
& (4.0 \mathrm{M})(2510 \mathrm{~mL})=C_{2}(600.0 \mathrm{~mL}) \\
& C_{2}=0.167 \mathrm{M}
\end{aligned}
$$

(e) What initial volume of 18 M hydrochloric acid is required to make 2.0 L of 0.50 M hydrochloric acid solution?

$$
\begin{aligned}
& C_{1} V_{1}=C_{2} V_{2} \\
& (18 \mathrm{M}) V_{1}=(0.50 \mathrm{M})(2.0 \mathrm{~L}) \\
& V_{1}=0.056 \mathrm{~L}
\end{aligned}
$$

(f) 250.0 mL of 0.20 M phosphoric acid is added to 1.00 L of water. What is the molarity of the resulting solution?

$$
\begin{aligned}
& C_{1} V_{1}=C_{2} V_{2} \\
& (0.20 \mathrm{M})(2500 \mathrm{~mL})=C_{2}(1250 \mathrm{~mL}) \\
& C_{2}=(0,040 \mathrm{M})
\end{aligned}
$$

