Anticipated time required: 3 hours
New learning objective: Limiting and Excess Reactants, Percent Yield
Goals to be completed:

1. Use basic stoichiometry calculations to solve which reactant limits a reaction, and how much of a reactant may be found in excess
2. Solve the percent yield of a chemical reaction
3. Practice Problems
4. Assignment

This PDF package contains several notes, examples and practice problems. The only formal portion that you are required to submit is the section titled "Formal Assignment to be Submitted". This can be sent to Charlie.feht@yesnet.yk.ca either as a scanned and uploaded PDF attachment to email, or as a jpeg image file.

Upcoming next week:
Solution Chemistry - Polarity of molecules and solutions, ionization and dissociation of molecules in solution

Please watch the following intro videos before you begin the package:

https://www.youtube.com/watch?v=dodsvTfqWNc
https://www.youtube.com/watch?v=ymCZ2ShhBAw

Limiting and Excess Reactants

Stoichiometric concepts we have already covered:

1. Using coefficients for stoichiometric calculations
2. Using moles, mass, gas volumes, and particles for stoichiometric calculations
3. Using molar concentration for stoichiometric calculations

And now for the final concept in this unit!! Limiting and Excess Reactants!
All of the questions we have been dealing with since the beginning have assumed that all of the given reactants have been fully used up, however this is not the case in real life. Reactions usually have one or more reactants left over.
Sometimes chemists will purposely have excess reactants in a reaction to make sure that the other chemical is completely used up in a chemical reaction.

Lets look at an example using tricycles.
If you have 32 wheels and 10 frames, how many tricycles can you make?
Balanced Reaction: 3 Wheels + 1 Frame $\rightarrow 1$ Tricycle
Calculation:

What reactant was used up completely? frames
This reactant is referred to as the "limiting reactant" because it has limited the amount of product that we could make (in this case, tricycles).
What reactant is left over? Wheels
This reactant is referred to as the "excess reactant" because we have some left over.
How much of this reactant is left over?

A simple way to find excess and limiting reactants is to calculate the mass of some arbitrarily selected product. For example: If 20 g of H_{2} reacts with 100 g of O_{2} gas, to form $\mathrm{H}_{2} \mathrm{O}$, which reactant is limiting and which one is in excess?

$$
2 \mathrm{H}_{2}+\mathrm{O}_{2} \rightarrow 2 \mathrm{H}_{2} \mathrm{O}
$$

$$
\begin{aligned}
& \text { (3) Mass of } \mathrm{H}_{2} \mathrm{O} \\
& \text { (based on } \mathrm{O}_{2} \text {) }
\end{aligned}=\log _{\mathrm{g}} \mathrm{O}_{2} \frac{1 \mathrm{molO}_{2}}{32 \mathrm{gO}_{2}} \times \frac{2 \mathrm{~mol} \mathrm{HoO}}{1 \text { mol O}} \times \frac{18 \mathrm{gH}_{2} \mathrm{C}}{1 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O}}=\frac{125 \mathrm{~g} \mathrm{H} \mathrm{H}_{2} \mathrm{O}}{11 \text { Smaller } \therefore \circ \text { limiting }}
$$

There is enough H_{2} to make $180 \mathrm{j} \mathrm{H}_{2} \mathrm{O}$ bat only enough O_{2} to make $112,5 \mathrm{~g}$ so of sets a limit on the reaction

Example 2. If 56.8 g of $\mathrm{FeCl}_{2}, 14.0 \mathrm{~g}$ of KNO_{3} and 40.0 of HCL are mixed and allowed to react according to the following equation: I have selected to solve the mass of the product NO simply because it has an easy molar mass to find

Solve potential mass of NO

based on the mass of each
reactant available
$3 \mathrm{FeCl}_{2}+\mathrm{KNO}_{3}+4 \mathrm{HCl} \rightarrow 3 \mathrm{FeCl}_{3}+\mathrm{NO}+2 \mathrm{H}_{2} \mathrm{O}+\mathrm{KCl}$
Which chemical is the LIMITING reactant? Ar bitrarily, Find NO mass based on each reactant
(1) $\mathrm{NO}_{\left(\mathrm{FeCl}_{2}\right)}=56.8 \mathrm{~g} \mathrm{FeCl} 2 \times \frac{1 \mathrm{~mol} \mathrm{FeCl}}{126.8 \mathrm{~g} \mathrm{Fell}} \times \frac{1 \mathrm{~mol} \mathrm{No}}{3 \mathrm{~mol} \mathrm{Fell}_{2}} \times \frac{30 \mathrm{~g} \mathrm{NO}}{1 \mathrm{molNO}}=4.48 \mathrm{~g}$
(2) $\mathrm{NO}_{\left(\mathrm{KNO}_{3}\right)}=14.0 \mathrm{KNO} \times \frac{1 \mathrm{md} \mathrm{KNO}_{3}}{101.1 \mathrm{KNO}} \times \frac{1 \mathrm{molNo}}{1 \mathrm{molNNO}} \times \frac{30 \mathrm{gNO}}{1 \mathrm{molNo}}=4.159$ limiting
(3) $\underset{(\mathrm{HCl})}{\mathrm{NO}}=40 \mathrm{gHCl} \times \frac{1 \mathrm{malHCl}}{36.5 \mathrm{y} \mathrm{HCl}} \times \frac{1 \mathrm{molNo}}{9 \mathrm{molHCl}} \times \frac{30 \mathrm{JN}}{4 \mathrm{molNo}}=\gamma .22 \mathrm{~g}$

Solve the stoich calculation for the remaining excess
How many grams of each EXCESS reactant are actually present in excess? (1) Find mass of $\mathrm{FeCl} / 2 / \mathrm{HCl}$ that react based on KNO_{3} reactants based on the known limiting reactant

$$
\begin{aligned}
& \text { Mass in excess }=56.8-52.7 \\
&=4.19 \text { Mass left over } \\
& \text { What we started with was actually } \\
& \text { used up }
\end{aligned}
$$

$$
\mathrm{HCl} \text { used }=14 \mathrm{~g} \mathrm{KNO}_{3} \times \frac{1{\text { mol } \mathrm{KNO}_{3}}_{101 . \mathrm{g} \mathrm{KNO}}^{3}}{} \times \frac{4 \mathrm{~mol} \mathrm{HCl}}{1 \mathrm{~mol} \mathrm{KNO}} 3 \times \frac{36.5 \mathrm{~g} \mathrm{HCl}}{1 \mathrm{molHCl}}=20.2 \mathrm{~g}
$$

Percent Yield

- Stoichiometry allows you to predict the amount of product that will be produced BUT
- Sometimes reactants don't completely react
- So the amount we calculate using the balanced reaction and mole ratios is a theoretical amount.
- Def: Theoretical Yield: The amount of product calculated using Stoichiometry
- Def: Actual Yield: The amount of product actually made when the reaction is done in a lab.
- You can think of it like baking pancakes. There is always some batter left in the bowl that doesn't get turned into a pancake...
- Def: Percent Yield $=\frac{\text { actual yield }}{\text { theoretical yield }} \times 100 \%$

Why, you might ask?

1. Not all of the pure material will react
2. The reactants may be impure to begin with
3. Some of the products are lost during physical separation

Example1:

What is the percent yield of water if you react 40 grams of Hydrogen with an excess of Oxygen and get 340 grams of water?

1. Solve the mass-mass Stoichiometry problem to find the theoretical yield

$$
\begin{gathered}
2 \mathrm{H}_{2}+\mathrm{O}_{2} \rightarrow 2 \mathrm{H}_{2} \mathrm{O} \\
40 \mathrm{~g} \mathrm{H}_{2} \times \frac{1 \mathrm{~mol} \mathrm{H}_{2}}{2.02 \mathrm{~g}} \times \frac{2 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O}}{2 \mathrm{~mol} \mathrm{H}_{2}} \times \frac{18.02 \mathrm{~g} \mathrm{H}_{2} \mathrm{O}}{1 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O}}=357 \mathrm{~g} \mathrm{H}_{2} \mathrm{O}
\end{gathered}
$$

2. Find the percent yield

$$
\frac{340 \mathrm{~g}}{357 \mathrm{~g}} \times 100 \%=95 \%
$$

Answer: 95\%

Chemistry 11

Example 2:
How much water can be made if you react 40 grams of Oxygen with an excess of hydrogen and the reaction, typically has a 95% yield?

1. Solve the mass-mass Stoichiometry problem to find the theoretical yield.

$$
40 \mathrm{~g} \mathrm{O}_{2} \times \frac{1 \mathrm{molO}_{2}}{32.00 g} \times \frac{2 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O}}{1 \mathrm{molO}_{2}} \times \frac{18.02 \mathrm{~g} \mathrm{H}_{2} \mathrm{O}}{1 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O}}=45 \mathrm{~g} \mathrm{H}_{2} \mathrm{O}
$$

2. Set up the \% yield equation and solve for actual yield

$$
95 \%=\frac{\mathrm{X}}{45 \mathrm{~g}} \times 100 \% \rightarrow .95=\frac{\mathrm{X}}{45 \mathrm{~g}} \rightarrow .95 \times 45 \mathrm{~g}=43 \mathrm{~g}
$$

Answer: 43 grams of water

Practice Problems Limiting Reagent Worksheet \#1

1. Given the following reaction: (Balance the equation first!)

$$
\mathrm{C}_{3} \mathbf{H}_{8}+\mathrm{O}_{2}-\cdots-\cdots \mathrm{CO}_{2}+\mathbf{H}_{2} \mathrm{O}
$$

a) If you start with 14.8 g of $\mathrm{C}_{3} \mathrm{H}_{8}$ and 3.44 g of O_{2}, determine the limiting reagent
b) determine the number of moles of carbon dioxide produced
c) determine the number of grams of $\mathrm{H}_{2} \mathrm{O}$ produced
d) determine the number of grams of excess reagent left
2. Given the following equation:

$$
\mathrm{Al}_{2}\left(\mathrm{SO}_{3}\right)_{3}+6 \mathrm{NaOH}----->3 \mathrm{Na}_{2} \mathrm{SO}_{3}+2 \mathrm{Al}(\mathrm{OH})_{3}
$$

a) If 10.0 g of $\mathrm{Al}_{2}\left(\mathrm{SO}_{3}\right)_{3}$ is reacted with 10.0 g of NaOH , determine the limiting reagent
b) Determine the number of moles of $\mathrm{Al}(\mathrm{OH})_{3}$ produced
c) Determine the number of grams of $\mathrm{Na}_{2} \mathrm{SO}_{3}$ produced
d) Determine the number of grams of excess reagent left over in the reaction
3. Given the following equation:

$$
\mathrm{Al}_{2} \mathrm{O}_{3}+\mathrm{Fe}---->\mathrm{Fe}_{3} \mathrm{O}_{4}+\mathrm{Al}
$$

a) If 25.4 g of $\mathrm{Al}_{2} \mathrm{O}_{3}$ is reacted with 10.2 g of Fe , determine the limiting reagent
b) Determine the number of moles of Al produced
c) Determine the number of grams of $\mathrm{Fe}_{3} \mathrm{O}_{4}$ produced
d) Determine the number of grams of excess reagent left over in the reaction

Formal Assignment to Submit

Balancing Equations and Simple Stoichiometry

Balance the following equations:

1) $\quad __{2} \mathrm{~N}_{2}+\ldots \mathrm{F}_{2} \rightarrow \ldots \mathrm{NF}_{3}$
2) $\quad Z_{6} \mathrm{C}_{6} \mathrm{H}_{10}+\ldots \mathrm{O}_{2} \rightarrow \ldots \mathrm{CO}_{2}+\ldots \mathrm{H}_{2} \mathrm{O}$
3) \qquad $\mathrm{KHCO}_{3} \rightarrow$ \qquad $\mathrm{H}_{2} \mathrm{O}+$ \qquad $\mathrm{KBr}+\ldots \mathrm{CO}_{2}$
4) \qquad $\mathrm{Na}_{2} \mathrm{SO}_{3} \rightarrow$ \qquad $\mathrm{Ga}_{2}\left(\mathrm{SO}_{3}\right)_{3}+$ \qquad NaBr
5)SnO + \qquad $\mathrm{NF}_{3} \rightarrow$ \qquad $\mathrm{SnF}_{2}+$ \qquad $\mathrm{N}_{2} \mathrm{O}_{3}$

Solve the following stoichiometry grams-grams problems:
6) Using the following equation:

$$
2 \mathrm{NaOH}+\mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow 2 \mathrm{H}_{2} \mathrm{O}+\mathrm{Na}_{2} \mathrm{SO}_{4}
$$

How many grams of sodium sulfate will be formed if you start with 200 grams of sodium hydroxide and you have an excess of sulfuric acid?
7) Using the following equation:

$$
\mathrm{Pb}\left(\mathrm{SO}_{4}\right)_{2}+4 \mathrm{LiNO}_{3} \rightarrow \mathrm{~Pb}\left(\mathrm{NO}_{3}\right)_{4}+2 \mathrm{Li}_{2} \mathrm{SO}_{4}
$$

How many grams of lithium nitrate will be needed to make 250 grams of lithium sulfate, assuming that you have an adequate amount of lead (IV) sulfate to do the reaction?

Use the following equation to answer questions 8-11:

$$
2 \mathrm{C}_{6} \mathrm{H}_{10}+17 \mathrm{O}_{2} \rightarrow 12 \mathrm{CO}_{2}+10 \mathrm{H}_{2} \mathrm{O}
$$

8) If I do this reaction with 35 grams of $\mathrm{C}_{6} \mathrm{H}_{10}$ and 45 grams of oxygen, how many grams of carbon dioxide will be formed?
9) What is the limiting reagent for problem 6 ?
10) How much of the excess reagent is left over after the reaction from problem 6 is finished?
11) If 35 grams of carbon dioxide are actually formed from the reaction in problem 6, what is the percent yield of this reaction?
