Chemistry 11 - Week 3: April 27 - May 1
Anticipated time required: 3 hours
New learning objective: solving percent composition, empirical formula and molecular formula

Goals to be completed:

1. Read through the hand written notes and examples. There are homework questions suggestions for added practice if you have your Hebden textbook. These are optional problems and not mandatory.
2. Review tutorial section summarizing percent composition, empirical and molecular formula. Complete the self-test as practice.
3. Complete and submit your empirical and molecular formula assignment

This PDF package contains several notes, examples and practice problems. The only formal portion that you are required to submit is the labelled section at the end. This can be sent to Charlie.feht@yesnet.yk.ca either as a scanned and uploaded PDF attachment to email, or as a jpeg image file. Midterm assignments will be scored and sent back to you as I receive them.

Upcoming next week:

Chemical reactions and balancing chemical equations

Percent composition notes
In a chemical compound, the percent composition is the percentage by mass of a species in a chemical formula.
example: What is the \% composition of CH_{4} ?

- assuming 1 mol
- molar mass is 16 g
- total mass of $C=12 \mathrm{~g}$
- total mass of $H=4 \times 1.0=4.0 \mathrm{~g}$

$$
\begin{aligned}
& \% \quad C=\frac{12 g}{16 g} \times 100 \%=25 \% \\
& \% H=\frac{4 g}{16 \mathrm{~J}}+100 \%=25 \%
\end{aligned}
$$

Try: $\mathrm{H}_{2} \mathrm{SO}_{4}$

$$
\mathrm{CuSO}_{4} \cdot 5 \mathrm{H}_{2} \mathrm{O} \text { find \% of }
$$

$$
9 . H_{0} \mathrm{O} \text { molecules }=\frac{90}{24.9 \mathrm{~g}}=36.1 \%
$$

$$
\% H=\frac{2 J}{98 \cdot 1 g}=2 \%
$$

$$
\% S=\frac{32.1 g}{98.19}=32.7 \%
$$

Empirade formula
\rightarrow The simplest whole number ratio of a formula used to represent molecular composition.
eg. What does $\mathrm{CH}_{2} \quad \mathrm{C}_{2} \mathrm{H}_{4} \quad \mathrm{C}_{3} \mathrm{H}_{6} \quad \mathrm{C}_{4} \mathrm{H}_{8}$ all have in common?

- Twice as many H to C !
- Therefore the simplest ratio (empiracte formula) is CH_{2} !

Example 1. A compound has a $\%$ composition of $80 \% \mathrm{C}$ and $20 \% \mathrm{H}$, what is the empiracle formula?

Hint Carbon is much Heavier than Hydrogen, 50 it is not as simpi as simply saying $8: 2$ ratio of $\mathrm{C}: H$ aka $\mathrm{C}_{4} H$!

Note that we don't have the chemical formula or the molar mass so lets assume we have log of the compound.
mass of $c=80 \%$ of $100 \mathrm{~g}=80 \mathrm{~g}$
mass of $H=20 \%$ of $100 \mathrm{~g}=20 \mathrm{~g}$

Now use the known molar mass of each element to find the \# of moles. moles of $C=80 \mathrm{~g} \times \frac{\mid \mathrm{mol}}{12 \mathrm{~g}}=6067 \mathrm{~mol}\{$ To find ratio, divide moles of $H=20 \mathrm{~g} \times \frac{\mid \mathrm{mol}}{\log }=20 \mathrm{~mol}$$\left\{\begin{array}{l}\text { both by the smaller the two nu } \\ \text { of }\end{array}\right.$
and empiracle formula is CH_{3}
Find empiracle formula of a compound that contains $58 \% \mathrm{C}, 7.3 \% \mathrm{H}$ and $34.1 \% \mathrm{~N}$

* always carry out calculations to 3 or 4 decimals A

$$
\begin{aligned}
& \text { Answer: } \\
& \text { Answer: } \begin{aligned}
& 58.5 \mathrm{~g} \times \frac{1 \mathrm{~mol}}{12 g}=4.88 \mathrm{~mol} \mathrm{C} \\
7.3 \mathrm{~g} \times \frac{1 \mathrm{~mol}}{1 g} & =7.3 \mathrm{~mol} \mathrm{hl} \\
&
\end{aligned} \\
& 34.1 \mathrm{~g} \times \frac{1 \mathrm{~mol}}{14 \mathrm{~g}}=2.44 \mathrm{~mol} \mathrm{~N} \\
& \begin{array}{r}
\div 2.44 \\
2 \\
3
\end{array}
\end{aligned}
$$

practice find empiracle form of a

* with imperfect numbers, multiply to get HW is 93 \# 464-OPTIONAL EXTRA PRACTICE
finding Molecular formula
The molar mass of a compound empirical - formula is called the empirical mass.

Recall, that if $\mathrm{CH}_{2} \mathrm{C}_{2} \mathrm{H}_{4} \mathrm{C}_{3} \mathrm{H}_{6} \quad \mathrm{C}_{4} \mathrm{H}_{8}$ all have the same empirical formula, they 15^{1} have a common whole number multiple of the empirical mass of CH_{2}

$$
\text { Multiple }(N)=\frac{\text { molar mass }}{\text { empirical mass compound }}
$$

So the molecular formula is $N \times$ empirical formula
example. A molecule has an empiracte formula of HO and a molar mass of 34.0 g . What is the molecular formula?
\rightarrow empirical mass of $H 0$ is 17 g .

$$
N=\frac{\text { molar mass }}{\text { empirical mass }} \quad N=\frac{349}{17 g} \quad N=2
$$

Molecular formula is $\mathrm{HO} \times 2=\mathrm{H}_{2} \mathrm{O}_{2}$

Tutorial 5-1
 Percent Mass and Empirical Formulas

Tutorial 5-1 will help you with the following:

1. Determine percent composition of a compound by mass, given the molecular formula.
2. Calculate the mass of an element contained in a given mass of a compound.
3. Empirical or "simplest" formulas for compounds and what they mean.
4. Determine the empirical formula for a compound from composition or percent composition by mass.
5. Determine the molecular formula from the molecular mass and the empirical formula.

So get out your calculator, periodic table, pencil and paper and let's rock and roll (as they used to say about 25 years ago).

Finding Percent Composition

Sometimes it is desirable to know the percentage mass of each element in a compound. One example is in fertilizers where percent nitrogen, phosphorus etc. is important in order to know what compounds to use with certain plants and soils. Another place where this comes in handy is in later Chemistry courses and of course for the Unit 5 test.

Let's start with an example and I'll go over it in typical step by step fashion. Have your periodic table right beside you. I will use the table that expresses the atomic masses to 1 decimal place. Make sure you have the same one.
eg.) Find the percent of carbon by mass in the compound ethane $\left(\mathrm{C}_{2} \mathrm{H}_{6}\right)$.
Step 1: Find the molar mass of $\mathrm{C}_{2} \mathrm{H}_{6}$ (The mass of one mole of $\mathrm{C}_{2} \mathrm{H}_{6}$ molecules)

$$
\text { Molar Mass }=2(12.0)+6(1.0)=30.0 \mathrm{~g} / \mathrm{mol}
$$

Step 2: Find the total mass of all the carbon atoms in one mole of the compound.
To do this, multiply the atomic mass of carbon by the subscript of carbon in the
formula.($\mathrm{C}_{2} \ldots$...)
Mass of carbon $=12.0 \mathrm{~g} / \mathrm{mol} \mathrm{x} 2 \mathrm{~mol}=24.0 \mathrm{~g}$ of carbon
Step 3: Divide the mass of carbon by the molar mass and multiply by 100 to get percent mass.

$$
\text { Percent mass of carbon }=\frac{24.0 \mathrm{~g}}{30.0 \mathrm{~g}} \times 100 \%=80.0 \% \mathrm{C}
$$

You may also be asked to find the percent of hydrogen by mass in the same compound $\left(\mathrm{C}_{2} \mathrm{H}_{6}\right)$. Let's do that:

Since it is the same compound $\left(\mathrm{C}_{2} \mathrm{H}_{6}\right)$, step 1 is already done.
Step 2: Find the total mass of all the hydrogen atoms in one mole of the compound.
To do this, multiply the atomic mass of hydrogen by the subscript of hydrogen in the formula. (.. H_{6})

Mass of hydrogen $=1.0 \mathrm{~g} / \mathrm{mol} \mathrm{x} \quad 6 \mathrm{~mol}=6.0 \mathrm{~g}$ of hydrogen
(NOTICE that we use the atomic mass of " H ", not the molar mass of " H_{2} ". We are talking about atoms of H , not molecules of H_{2} gas)

Step 3: Divide the mass of hydrogen by the molar mass of $C_{2} H_{6}$ and multiply by 100% to get percent mass.

$$
\text { Percent mass of hydrogen }=\frac{6.0 \mathrm{~g}}{30.0 \mathrm{~g}} \times 100 \%=20.0 \% \mathrm{H}
$$

Notice that when you add up the percent Carbon (80\%) and the percent Hydrogen (20\%), you get 100%. The percent mass of all the elements in a compound should always add up to 100%.
Sometimes, you won't get exactly 100% due to rounding off. (99% would be alright, but something like 97% would be too far off!)

NOTE. When they ask you to find the "Percent Composition", you have to find the percent of each element in the compound by mass.

Let's do another example:
Find the percent composition by mass of potassium dichromate $\left(\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}\right)$.
Step 1: Find the molar mass of $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$ (The mass of one mole of $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$ molecules)
Molar Mass $=2(39.1)+2(52.0)+7(16.0)=294.2 \mathrm{~g} / \mathrm{mol}$.
Step 2: Find the total mass of all the potassium atoms in one mole of the compound.
To do this, multiply the atomic mass of potassium by the subscript of potassium in the formula.(K_{2}...)

Mass of potassium $=39.1 \mathrm{~g} / \mathrm{molx} 2 \mathrm{~mol}=78.2 \mathrm{~g}$ of potassium
Step 3: Divide the mass of potassium by the molar mass of $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$ and multiply by 100% to get percent mass.

$$
\text { Percent mass of potassium }=\frac{78.2 \mathrm{~g}}{294.2 \mathrm{~g}} \mathrm{x} \quad 100 \%=26.6 \% \mathrm{~K}
$$

Step 4: Find the total mass of all the chromium atoms in one mole of the compound.
To do this, multiply the atomic mass of chromium by the subscript of chromium in the formula.(... Cr_{2}...)

Mass of chromium $=52.0 \mathrm{~g} / \mathrm{mol} \mathrm{x} 2 \mathrm{~mol}=104 \mathrm{~g}$ of chromium
Step 5: Divide the mass of chromium by the molar mass of $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$ and multiply by 100% to get percent mass.

$$
\text { Percent mass of chromium }=\frac{104 \mathrm{~g}}{294.2 \mathrm{~g}} \mathrm{x} \quad 100 \%=35.4 \% \mathrm{Cr}
$$

Step 6: Find the total mass of all the oxygen atoms in one mole of the compound.
To do this, multiply the atomic mass of oxygen by the subscript of oxygen in the
formula.(...O O_{7})
Mass of oxygen $=16.0 \mathrm{~g} / \mathrm{mol} \mathrm{x} 7 \mathrm{~mol}=112 \mathrm{~g}$ of oxygen

Step 7: Divide the mass of oxygen by the molar mass of $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$ and multiply by 100% to get percent mass.

$$
\text { Percent mass of oxygen }=\frac{112 \mathrm{~g}}{294.2 \mathrm{~g}} \times 100 \%=38.1 \% \mathrm{O}
$$

Now, we can summarize the percent composition by mass of $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$.
$\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$ is 26.6% potassium, 35.4% chromium and 38.1% oxygen by mass.
Adding these three percentages up gives a total of 100.1%. This is close enough to 100 . In all the calculations above, the percentage was rounded to 3 significant digits, as justified by the atomic masses on the table. When rounding is done, the total isn't always exactly 100%.

Here's an example for you to try.
Question 1. Find the percent composition by mass of sodium phosphate, $\mathrm{Na}_{3} \mathrm{PO}_{4}$.
After you have done this, turn to Tutorial 5-1 Help and for the solution. Check your answers. If you don't understand the solution, see the teacher for help!

CAUTION:

It is very important to use care when working with formulas with brackets.
For example, let's say you were asked to determine the percent composition of the compound ammonium phosphate. The formula is $\left(\mathrm{NH}_{4}\right)_{3} \mathrm{PO}_{4}$.

When you are going through the steps, you must remember that in this formula there are:

$$
(3 \times 1)=\mathbf{3} \text { "N"s, } \quad(3 \times 4)=\mathbf{1 2} \text { "H"s, } \mathbf{1} \text { "P" and } \mathbf{4} \text { "O"s }
$$

Question 2 Find the percent composition by mass of the compound ammonium phosphate, $\left(\mathrm{NH}_{4}\right)_{3} \mathrm{PO}_{4}$.

When you are finished, check the solution for this question on Tutorial 5-1 Help.

Finding Mass of an Element in a Given Mass of Compound

Sometimes you need to know the mass of a certain element which is contained in a sample of a compound. One way of analyzing hydrocarbons (compounds containing carbon and hydrogen) is to burn them, producing CO_{2} and $\mathrm{H}_{2} \mathrm{O}$. The mass of carbon in an original hydrocarbon sample can be found by knowing the mass of CO_{2} which is formed. Let's do an example.

Find the mass of carbon contained in a 25.0 gram sample of carbon dioxide $\left(\mathrm{CO}_{2}\right)$.
We can make ourselves a conversion factor:
We know that there is 1 mole of C atoms in 1 mole of CO_{2} molecules (the subscript on C is " 1 ")
We know that the mass of 1 mole of C atoms $=12.0$ grams (it's atomic mass)
We know that the mass of 1 mole of CO_{2} molecules is 44.0 grams (it's molar mass or $12.0+2(16.0)$)
So from this we can make the conversion factor:

$$
\frac{12.0 \mathrm{~g} \text { of C }}{44.0 \mathrm{~g} \text { of } \mathrm{CO}_{2}}
$$

We can use this conversion factor to find the answer to the question:

$$
25.0 \mathrm{~g} \text { of } \mathrm{CO}_{2} \times \frac{12.0 \mathrm{~g} \text { of } \mathrm{C}}{44.0 \mathrm{~g} \text { of } \mathrm{CO}_{2}}=\underline{\mathbf{6 . 8 2} \mathrm{g} \text { of } \mathbf{C}}
$$

Let's do another example: Find the mass of potassium contained in 450.0 g of $\mathrm{K}_{2} \mathrm{CO}_{3}$.
We see by the formula that there are 2 atoms of K in one molecule of $\mathrm{K}_{2} \mathrm{CO}_{3}$ (or 2 moles of K atoms in one mole of $\mathrm{K}_{2} \mathrm{CO}_{3}$)

So the mass of K in one mole of $\mathrm{K}_{2} \mathrm{CO}_{3}$ is 2 x 39.1 (2 x the atomic mass of K) $=78.2 \mathrm{~g}$
The mass of one mole of $\mathrm{K}_{2} \mathrm{CO}_{3}$ is it's molar mass $(2(39.1)+12.0+3(16.0))=138.2 \mathrm{~g}$
So our conversion factor this time is: $\quad 78.2 \mathrm{~g}$ of K
138.2 g of $\mathrm{K}_{2} \mathrm{CO}_{3}$

We can now do the question. We wanted to know the mass of K in 450.0 g of $\mathrm{K}_{2} \mathrm{CO}_{3}$.

$$
450.0 \mathrm{~g} \text { of } \mathrm{K}_{2} \mathrm{CO}_{3} \times \frac{78.2 \mathrm{~g} \text { of } \mathrm{K}}{138.2 \mathrm{~g} \text { of } \mathrm{K}_{2} \mathrm{CO}_{3}}=\underline{\mathbf{2 5 5} \mathbf{g} \text { of } \mathbf{K}}
$$

To find the mass of oxygen in 450.0 g of $\mathrm{K}_{2} \mathrm{CO}_{3}$ we could make the conversion factor:

$$
\frac{3(16.0) \mathrm{g} \text { of } \mathrm{O}}{138.2 \mathrm{~g} \text { of } \mathrm{K}_{2} \mathrm{CO}_{3}}=\frac{48.0 \mathrm{~g} \text { of } \mathrm{O}}{138.2 \mathrm{~g} \text { of } \mathrm{K}_{2} \mathrm{CO}_{3}}<--\left(3 \text { x the atomic mass of " } \mathrm{O}^{\prime}\right. \text { ") }
$$

To finish the question we write down:
450.0 g of $\mathrm{K}_{2} \mathrm{CO}_{3} \times \frac{48.0 \mathrm{~g} \text { of O}}{138.2 \mathrm{~g} \text { of } \mathrm{K}_{2} \mathrm{CO}_{3}}=\mathbf{1 5 6 \mathrm { g } \text { of " } \mathbf { O } \text { " }}$

Here's an example for you. Make sure you try it!

Question 3

Find the mass of Na in 568 g of $\mathrm{Na}_{3} \mathrm{PO}_{4}$
Do this in your notebook showing all units and conversion factors.
Check your answer on Tutorial 5-1 HELP.

What is Meant by the Empirical Formula of a Compound?

We know that the molecular formula of a compound tells the number of each kind of atom in the compound.

For example the molecularformula for the compound octane is $\mathbf{C 8} \mathbf{H}_{18}$.
This means that in one molecule of octane there are 8 " C " atoms and 18 " H " atoms.

Empirical Formula means the simplest formula. This formula gives the simplest whole number ratio of atoms in the molecule.

So the molecular formula of octane is $\mathrm{C}_{8} \mathrm{H}_{18}$ \& the empiricalformula of octane is $\mathrm{C}_{4} \mathrm{H}_{9}$
The molecular formula of hydrogen peroxide is $\mathrm{H}_{2} \mathrm{O}_{2}$. You can hopefully see that the empirical formula (simplest formula) of hydrogen peroxide is HO. (both subscripts are divided by 2 ,)

Quite often the molecular formula of a compound is the simplest formula to begin with (You can't divide all subscripts by any whole number) In these cases, the empirical formula (simplestformula) is the same as the molecular formula.

An example would be a compound with the molecular formula $\mathrm{C}_{3} \mathrm{H}_{8} \mathrm{O}$.
The empirical formula for this compound would also be $\mathrm{C}_{3} \mathrm{H}_{8} \mathrm{O}$.

Question 4

Given the following molecular formulas, find the empirical formulas.

Molecular Formula	Empirical Formula
$\mathrm{P}_{4} \mathrm{O}_{10}$	
$\mathrm{C}_{10} \mathrm{H}_{22}$	
$\mathrm{C}_{6} \mathrm{H}_{18} \mathrm{O}_{3}$	
$\mathrm{C}_{5} \mathrm{H}_{12} \mathrm{O}$	
$\mathrm{N}_{2} \mathrm{O}_{4}$	

Check the answers on Tutorial 5-1 HELP.

Finding Empirical Formulas From Masses of Elements in a Sample

You have probably been wondering, "What is the Point? Why do we need to bother with empirical formulas (simplest formulas) when the molecular formula tells us more about the compound?" Or you also might be wondering, "Why do we bother with all this Math stuff at all? We just want to blow things up!"

Well, I can answer the first question. When an unknown compound is analyzed and the elements in it are determined, chemists can often find the mass of each element in a sample. This can be accomplished by burning (combustion analysis) or by decomposition by some other means.

It turns out that the empirical or simplest formula is easy to find once we know the mass of each element. Later, with a little more experimentation, the molecular mass can be determined. Then the molecular formula can be found and we are closer to knowing what the unknown compound is.

Analyzing unknown samples and finding out what they are is a very important part of chemistry called analytical chemistry. This can be much more useful than just blowing things up. It may help us track down a person who did blow something up and put him in jail! ...or find a pesticide residue in vegetables ...or millions of other uses.

The key to finding the empirical or simplest formula is to change the masses into moles of each element. As you know from Tutorial 8, the ratio of moles of atoms in a sample of a compound would be the same as the ratio of single atoms in one molecule of the compound.

Again, this process is best illustrated by using an example. Read through this caref ully and try to understand each step! Later, as you may have guessed, you will get some of your own to try!

Example: A sample of an unknown compound was analyzed and found to contain 8.4 grams of carbon, 2.1 grams of hydrogen and 5.6 grams of oxygen. Find the empirical (or simplest) formula for this compound.

The first thing we do is change grams of each element into moles of atoms. To do this we use the atomic mass (not the molar mass) of each element. eg. for hydrogen use the atomic mass $(1.0 \mathrm{~g} / \mathrm{mol})$, NOT the molar mass for $\mathrm{H}_{2}(2.0 \mathrm{~g} / \mathrm{mol})$

$$
8.4 \mathrm{~g} \text { of } \mathrm{C} \times \frac{1 \mathrm{~mol} \mathrm{of} \mathrm{C}}{12.0 \mathrm{~g}}=\underline{0.7 \mathrm{~mol} \text { of } \mathrm{C}}
$$

2.1 g of $\mathrm{H} \times \frac{1 \mathrm{~mol} \mathrm{of} \mathrm{H}}{1.0 \mathrm{~g}}=\underline{2.1 \mathrm{~mol} \text { of } \mathrm{H}}$
5.6 g of O $\times \frac{1 \mathrm{~mol} \mathrm{of} \mathrm{O}}{16.0 \mathrm{~g}}=\underline{0.35 \mathrm{~mol} \mathrm{of} \mathrm{O}}$

Next what we do is to find the simplest mole ratio. This can usually be done in one step, although sometimes two steps are involved as we will see.

What you do is take the smallest number of moles and divide the moles of each element by this number.

In our example the smallest number of moles is $\mathbf{0 . 3 5} \mathrm{mol}$ for the oxygen. Dividing each by 0.35 , we get:

$$
\begin{array}{lll}
8.4 \mathrm{~g} \text { of } \mathrm{C} \times \frac{1 \mathrm{~mol} \mathrm{of} \mathrm{C}}{12.0 \mathrm{~g}}=\underline{0.7 \mathrm{~mol} \mathrm{of} \mathrm{C}} & --> & \frac{0.7 \mathrm{~mol} \mathrm{of} \mathrm{C}}{0.35}=2 \mathrm{~mol} \mathrm{C} \\
2.1 \mathrm{~g} \text { of } \mathrm{H} \times \frac{1 \mathrm{~mol} \mathrm{of} \mathrm{H}}{1.0 \mathrm{~g}}=\underline{2.1 \mathrm{~mol} \text { of } \mathrm{H}}--> & \frac{2.1 \mathrm{molof} \mathrm{H}}{0.35}=6 \mathrm{~mol} \mathrm{H} \\
5.6 \mathrm{~g} \text { of O } \times \frac{1 \mathrm{~mol} \mathrm{of} \mathrm{O}}{16.0 \mathrm{~g}}=\underline{0.35 \mathrm{~mol} \mathrm{of} \mathrm{O}}--> & \underline{0.35 \mathrm{~mol} \mathrm{of} \mathrm{O}} 0=1 \mathrm{~mol} \mathrm{O}
\end{array}
$$

From this, we can see that the simplest (or empirical) formula would be: $\mathbf{C}_{\mathbf{2}} \mathbf{H}_{\mathbf{6}} \mathbf{O}$

This process is easier if we do it in table form. It also simplifies it a little bit if we realize that to get moles of atoms of an element, we simply divide the mass by the atomic mass:

In the next example, we will use the table form. It is best if you can remember the headings for each column of the table and then the process becomes easier - providing you get lots of practice!

Example:
0.888 grams of a compound made up of carbon, hydrogen and oxygen are analyzed and found to contain 0.576 grams of carbon and 0.120 grams of hydrogen. Determine the empirical (or simplest) formula for this compound.

The first thing we have to do is find the mass of oxygen in this compound. (Notice they did not give it to us!)
If the total mass is 0.888 g and it's made up of $\mathrm{C}, \mathrm{H} \& \mathrm{O}$, the mass of oxygen must be
[The total mass] - [the mass of $\mathrm{C}+$ the mass of H]
$=0.888 \mathrm{~g}-(0.576 \mathrm{~g}+0.120 \mathrm{~g})=0.888 \mathrm{~g}-0.696 \mathrm{~g}=\underline{\mathbf{0 . 1 9 2} \mathrm{g} \text { of oxygen }}$
Now, we set up a table with the following headings:

Element	Mass	Atomic Mass	Moles	Moles Smallest moles	Simplest Whole \# Ratio

You would put in a row for each element in your compound. In this example there are three elements: C, H and " O ". The calculations are done in the same way as the previous example. Remember that moles $=$ mass \div atomic mass. In the $5^{\text {th }}$ column, we divide each "moles" by the smallest number of moles. We may get a whole number ratio. If we don't, there should be a simple number ($2,3,4$ or 5) that we can multiply all the entries by in order to get a whole \# ratio. Make sure you carefully go over the solution to this problem given in the next table. If you don't understand each step, review the previous example. Ask for help if you need it.

Element	Mass	Atomic Mass	Moles	Moles Smallest moles	Simplest Whole \# Ratio
carbon	0.576 g	$12.0 \mathrm{~g} / \mathrm{mol}$	0.0480 mol	$\frac{0.0480}{0.0120}=4$	$\mathbf{4}$
hydrogen	0.120 g	$1.0 \mathrm{~g} / \mathrm{mol}$	0.12 mol	$\frac{0.12}{0.0120}=10$	$\mathbf{1 0}$
oxygen	0.192 g	$16.0 \mathrm{~g} / \mathrm{mol}$	0.0120 mol	$\frac{0.0120}{0.0120}=1$	$\mathbf{1}$

From this we can see that the empiricalformula is $\mathbf{C 4}_{4} \mathbf{H}_{10} \mathbf{O}$

Finding Empirical Formulas From Percentage Composition

Empirical formulas can also be found using percentage of each element in a compound. This is probably obvious given the title of this section!

What we do given \% composition is just pretend that we have 100.000 grams of the sample. (The significant digits will depend on the data given.)

Let's do another example:
A white powder used in paints, enamels and ceramics has the following composition:
"Ba" 69.58%, "C" 6.090%, and "O" 24.32%. Determine it's empirical formula.
Now, if we had 100.00 grams, we would have 69.58 g of Ba, 6.090 g of C and 24.32 g of "O". We can now use these as "Mass" for each element in our table and do the rest of the calculations:

Element	Mass	Atomic Mass	Moles	Moles Smallest moles	Simplest Whole \# Ratio
barium	69.58 g	$137.3 \mathrm{~g} / \mathrm{mol}$	0.5068 mol	$\frac{0.5068}{0.5068}=1$	$\mathbf{1}$
carbon	6.090 g	$12.0 \mathrm{~g} / \mathrm{mol}$	0.5075 mol	$\frac{0.5075}{0.5068}=1.001$	$\mathbf{1}$
oxygen	24.32 g	$16.0 \mathrm{~g} / \mathrm{mol}$	1.52 mol	$\frac{1.52}{0.5068}=2.999$	$\mathbf{3}$

So the empirical formula is $\mathbf{B a C O}_{3}$ and the substance is barium carbonate.

What to do when the "moles \div smallest \# of moles" do NOT all come out to whole numbers.

Occasionally when doing an empirical formula, the numbers in column 5 (moles \div smallest \# of moles) do not come out to nice whole numbers.

If they come out to almost a whole number, round them to that whole number.

For example if you divide the moles of an element by the smallest \# of moles and you get an answer like $2.97 \rightarrow$ round it to 3 . If you get something like $5.04 \rightarrow$ round it to 5 .

If they come out nowhere near a whole number, use the following guideline:

If the number ends in a decimal of \quad Multiply $A L L$ the numbers in this column by

$\sim .5$	$\mathbf{2}$
$\sim .33$ or $\sim .66$	$\mathbf{3}$
$\sim .25$ or $\sim .75$	$\mathbf{4}$
$\sim .2$ or $\sim .4$ or $\sim .6$ or $\sim .8$	$\mathbf{5}$

Let's say the values for "moles \div smallest \# of moles" comes out to the following: (In thefollowing table the columns for "Mass", "Atomic Mass" and "Moles" are left out just for simplicity. They would not be omitted in a real problem. The symbol " \sim " means "about".)

Element	Moles Smallest moles	Simplest Whole \# Ratio	Final ratio
carbon	1.01	$1 \times \mathbf{3}=3$	$\mathbf{3}$
hydrogen	2.66	$2.66 \times \mathbf{3}=7.98$	$\mathbf{8}$

Look at the table above, the " 1.01 " for carbon was close enough to a " 1 " to round it off to the integer " 1 ". However the " 2.66 " for the hydrogen was not close to any whole number. Referring to the table right above this one, if one of the numbers ends in about .67 , multiply ALL the numbers by " 3 ". So we did that. The " 1 " for the carbon and the " 2.66 " for the hydrogen are BOTH multiplied by " 3 ". The resulting " 7.98 " for the hydrogen is close enough to " 8 " to be rounded to the whole number " 8 ".

Therefore, the empirical formula for the compound in this example was $\mathbf{C 3} \mathbf{H 8}$

Finding the Molecular Formula from the Empirical Formula and Molar Mass

The last task of this tutorial is to show you how to go one step farther and find the actual molecular formula for a compound.

At this point we should quickly review what the empirical and molecular formulas are:
The molecularformula of a compound tells the actual number of each kind of atom in the compound.

For example, the molecularformula of octane is $\mathrm{C}_{8} \mathrm{H}_{18}$
Empirical Formula means the simplest formula. This formula gives the simplest whole number ratio of atoms in the molecule.

For example, the empirical formula of octane (molecular formula $\mathrm{C}_{8} \mathrm{H}_{18}$) is $\mathrm{C}_{4} \mathrm{H}_{9}$
You will notice that if you multiply all the subscripts in the empirical formula (4 \& 9) by " 2 ", you will get the subscripts of the molecular formula (8 \& 18).

The molecular formula is either:
a) the same as the empirical formula or
b) a simple whole number multiple of the empirical formula (like x 2 , x 3 etc.)

If you have the empirical formula and are given the molar mass, it is simple to find the molecular formula.

Let's do an example:
The empirical formula for a compound is $\mathrm{CH}_{2} \mathrm{O}$ and the molar mass (some books call it the molecular mass) is $60.0 \mathrm{~g} / \mathrm{mol}$. Find the molecular formula.

First find the mass of the empirical formula:

Now try to find a simple whole number that you multiply the mass of the empirical formula by to get the molar mass:

You can see that in this case the simple whole number is "2"
Now, multiply all subscripts in the empirical formula by this whole number: (" 2 " in this case)

A good thing to do now is to figure out the molecular mass using your molecular formula $\left(\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{O}_{2}\right)$ and make sure it is the same as the molar mass given ($60.0 \mathrm{~g} / \mathrm{mol}$):

So $\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{O}_{2}$ must be the correct molecular formula for this compound.

This is easiest to do using little table:

Now, here's a question for you to try. Make a table like the one above. Question 5

The empirical formula for a compound is $\mathrm{CH}_{2} \mathrm{O}$ and the molar mass is 90.0 . Find the molecular formula.

RECOMMENDED PRACTICE PROBLEMS BELOW

**

Self-Test on Tutorial 5-1

Do all of these questions showing full work and check the answers on Tutorial 5-1 HELP. Show the teacher your work.

1. Determine the percent composition of the compound calcium nitrate $\left(\mathrm{Ca}\left(\mathrm{NO}_{3}\right)_{2}\right)$
(That is, find the $\%$ calcium, the $\%$ nitrogen and the $\%$ oxygen in this compound.)
2. Find the mass of carbon contained in 336.16 grams of CO_{2}.
3. Find the mass of oxygen contained in 860.0 grams of magnesium nitrate $\left(\mathrm{Mg}\left(\mathrm{NO}_{3}\right)_{2}\right)$
4. A compound used in photography is called potassium persulphate. A 0.8162 gram sample of the compound was analyzed and found to contain 0.2361 grams of potassium, 0.1936
grams of sulphur and the rest was oxygen.
a) Find the mass of oxygen in the sample.
b) Determine the empirical formula for this compound. (Use a table like the one on page 10)
c) The molar mass of this compound is $270.4 \mathrm{~g} / \mathrm{mol}$. Determine the molecular formula. (Use a table like the one on the top of this page.)
\qquad Date: \qquad

TO BE SUBMITTED

Empirical Formula Assignment

1. What is the empirical formula for a compound which contains 0.0134 g of iron, 0.00769 g of sulfur and 0.0115 g of oxygen?
2. Find the empirical formula for a compound which contains 32.8% chromium and 67.2% chlorine.
3. What is the empirical formula for a compound which contains 67.1% zinc and the rest is oxygen?
4. Barry Um has a sample of a compound which weighs 200 grams and contains only carbon, hydrogen, oxygen and nitrogen. By analysis, he finds that it contains 97.56 grams of carbon, 4.878 g of hydrogen, 52.03 g of oxygen and 45.53 g of nitrogen. Find its empirical formula.
5. The characteristic odor of pineapple is due to ethyl butyrate, an organic compound which contains only carbon, hydrogen and oxygen. If a sample of ethyl butyrate is known to contain 0.62069 g of carbon, 0.103448 g of hydrogen and 0.275862 g of oxygen, what is the empirical formula for ethyl butyrate?

TO BE SUBMITTED

Molecular Formula Worksheet

Molecular formula - a formula showing the types and numbers of atoms combined in a single molecule of a molecular compound. It is a whole number multiple of the empirical formula.

The relationship between a compound's empirical and molecular formula can be written as:

$$
\begin{gathered}
x(\text { empirical formula })=\text { molecular formula } \\
\text { also } \\
x(\text { empirical formula mass })=\text { molecular formula mass }
\end{gathered}
$$

1. To determine the molecular formula of a compound, you must know the compound's molar mass.
2. Divide the molecular mass by the empirical formula mass to determine the whole number multiple (x). You may have to find the empirical formula in order to obtain the empirical formula mass.

Problems:

1. In a previous problem, the empirical formula of a compound of phosphorus and oxygen was found to be $\mathrm{P}_{2} \mathrm{O}_{5}$. Experimentation shows that the molar mass of this compound is $283.89 \mathrm{~g} / \mathrm{mol}$. What is the compounds molecular formula?
2. Determine the molecular formula of the compound with an empirical formula of CH and a molar mass of $78.110 \mathrm{~g} / \mathrm{mol}$.
3. A sample with a molar mass of $34.00 \mathrm{~g} / \mathrm{mol}$ is found to consist of 0.44 g H and 6.92 g O . Find its molecular formula.
4. If 4.04 g of N combine with 11.46 g O to produce a compound with a molar mass of $108.0 \mathrm{~g} / \mathrm{mol}$, what is the molecular formula of this compound?
5. The empirical formula for trichloroisocyanuric acid, the active ingredient in many household bleaches, is OCNCl. The molar mass of this compound is $232.41 \mathrm{~g} / \mathrm{mol}$. What is the molecular formula of trichloroisocyanuric acid.
6. The molar mass of a compound is $92 \mathrm{~g} / \mathrm{mol}$. Analysis of a sample of the compound indicates that it contains 0.606 g N and 1.390 g O. Find its molecular formula.
7. Determine the molecular formula of a compound with an empirical formula of NH_{2} and a formula mass of $32.06 \mathrm{~g} / \mathrm{mol}$.
