Review practice problems (answers to be posted Thursday):

1. How many molecules of carbon dioxide are present in 15 litres of gas at STP?
$\frac{15 \mathrm{~L} \mathrm{CO} 2}{1} \times \frac{1 \mathrm{~mol} \mathrm{CO} 2}{22.4 \mathrm{LCO} 2} \times \frac{6.02 \times 10^{23} \text { molecules }}{1 \mathrm{~mol} \mathrm{HCO} 2}=4.03 \times 10^{23}$ molecules of CO_{2}
2. How many atoms of hydrogen are present in 15 g of NH_{3} ?
$\frac{15 \mathrm{~g} \mathrm{NH} 3}{1} \times \frac{1 \mathrm{~mol} \mathrm{NH} 3}{17 \mathrm{~g} \mathrm{NH}} \times \frac{6.02 \times 10^{23} \text { molecules NH3 }}{1 \mathrm{~mol} \mathrm{NH} 3} \times \frac{3 \text { atoms } \mathrm{H}}{1 \text { molecule NH3}}=1.6 \times 10^{24}$ atoms of H
3. If you have 13 moles of NaCl and want to use all of it to prepare a 0.25 M solution, how much water do you need as your solvent?
$13 \mathrm{~mol} \mathrm{NaCl} / 0.25 \mathrm{M} \mathrm{NaCl}=52 \mathrm{~L}$
4. What is the concentration of a solution that has 50 g of CuSO_{4} dissolved in 250 ml of water?
$\frac{50 \mathrm{~g} \mathrm{CuSO} 4}{1} \times \frac{1 \mathrm{~mol} \mathrm{CuSO}_{4}}{159.5 \mathrm{~g} \mathrm{CuSO} 4}=0.313 \mathrm{~mol} \mathrm{CuSO}_{4} \quad 0.313 \mathrm{~mol} \mathrm{CuSO}_{4} / .250 \mathrm{~L}=[1.25] \mathrm{CuSO}_{4}$
5. How many grams of lodine are required to prepare a $500 \mathrm{ml}, 0.2$ molar solution?
$0.5 \mathrm{~L} \times 0.2 \mathrm{M}=0.1 \mathrm{~mol}$ Iodine $\quad \frac{0.1 \mathrm{~mol} \mathrm{I}}{1} \times \frac{130 \mathrm{~g} \mathrm{I}}{1 \mathrm{~mol} \mathrm{l}^{2}}=13 \mathrm{~g} \mathrm{I}$
