Chemistry 11 - Week 2: April 20-24
Anticipated time required: 3 hours
New learning objective: solving concentrations and dilutions of solutions
Goals to be completed:

1. Review how to solve multi step mole conversions
2. Review how to solve molarity problems
3. New this week: Applying the concept of molarity to practical applications such as creating diluted solutions from more concentrated stock solutions

This PDF package contains several notes, examples and practice problems. The only formal portion that you are required to submit is the section titled "Formal Assignment to be Submitted". This can be sent to Charlie.feht@yesnet.yk.ca either as a scanned and uploaded PDF attachment to email, or as a jpeg image file. Midterm assignments will be scored and sent back to you as I receive them.

Upcoming next week:
Percent Composition and Empirical Formula of Compounds

Section 1: Solving multi-step mole problems review

Recall from the images above and below, that we are aware of three ways to solve mole related problems right now. Molar mass will vary depending on the type of molecule you have, avagadro's number (6.02×10^{23}) will solve number of particles, and $22.4 \mathrm{~L} / \mathrm{mol}$ will help us to solve a gas at STP (standard temperature and pressure).

Sample problem \#1

What volume of $\mathrm{H}_{2} \mathrm{O}$ gas at STP can be evaporated from 50 g of liquid water?

Solution \#1

$\frac{50 \mathrm{~g} \mathrm{H} 2 \mathrm{O}}{1} \times \frac{1 \mathrm{~mol} \mathrm{H} 2 \mathrm{O}}{18 \mathrm{~g} \mathrm{H} 2 \mathrm{O}} \times \frac{22.4 L \mathrm{H} 2 \mathrm{O}}{1 \mathrm{~mol} \mathrm{H} 2 \mathrm{O}}=62 \mathrm{~L} \mathrm{H}_{2} \mathrm{O}$
Here we can see that the units " $\mathrm{g} \mathrm{H}_{2} \mathrm{O}$ " and " $\mathrm{mol} \mathrm{H}_{2} \mathrm{O}$ " cancel each other out, leaving us with our desired units of $\mathrm{L}_{2} \mathrm{O}$. Simply multiple all of the numerators across the top ($50 \times 1 \times 22.4=$ 1120) and all the denominators along the bottom ($1 \times 18 \times 1=18$). Then divide the two to get your final answer (1120/18 = 62.2 \ldots. round for sigfigs).

Helpful youtube video for further clarification:

https://www.youtube.com/watch?v=LSZhlNB94DA

Section 2: Solving Molarity Problems Review

We have used molarity in previous lessons to solve the concentration of a substance. Molarity is defined as the amount moles of a solute dissolved in a specific volume of solvent to form a specifically concentrated solution.

Concentration of solutions can be represented in several ways:

1. Concentration; C
2. Molarity; M
3. Units; mol/L
4. Square brackets; []
5. "Molar"

The formula for molarity contains three variables. Therefore, as long as we know two of them, we can manipulate the formula to solve the remaining variable.

Ex 1. $\mathrm{M}=\mathrm{mol} / \mathrm{L}$
Ex 2. $\mathrm{Mol}=\mathrm{MxL}$
Ex 3. $\mathrm{L}=\mathrm{mol} / \mathrm{M}$

Sample Problem \# 2

For a lab you are required to prepare 300 ml of 0.5 M calcium chloride solution. How many grams of calcium chloride do you need in order to prepare this solution?

Solution \#2

What we know: Volume of 300 ml corresponds to 0.3 L , required concentration of [0.5] CaCl_{2} Need to solve: number of moles

Step 1. Use the formula mol $=\mathrm{M} \times \mathrm{L}$ to solve how many moles of CaCl_{2} are required

$$
\begin{gathered}
\mathrm{mol}=[0.5] \times 0.3 \mathrm{~L} \\
\mathrm{~mol}=0.15 \mathrm{~mol} \text { of } \mathrm{CaCl}_{2}
\end{gathered}
$$

Step 2. Solve the specific mass using the molar mass formula for CaCl_{2}
Molar mass of $\mathrm{CaCl}_{2}=40 \mathrm{~g} / \mathrm{mol}($ Calcium $)+2 \times 35.5 \mathrm{~g} / \mathrm{mol}($ two Chlorines $)=111 \mathrm{~g} / \mathrm{mol}$
Step 3. Solve the specific mass required for this solution.

$$
0.15 \mathrm{~mol} \mathrm{CaCl}_{2} \times 111 \mathrm{~g} / \mathrm{mol} \mathrm{CaCl}_{2}=16.65 \mathrm{~g} \mathrm{CaCl}_{2}
$$

Play around with the following simulation to see how volume and solute can impact concentration:
https://phet.colorado.edu/sims/html/concentration/latest/concentration_en.html

Review practice problems (answers to be posted Thursday):

1. How many molecules of carbon dioxide are present in 15 litres of gas at STP?
2. How many atoms of hydrogen are present in 15 g of NH_{3} ?
3. If you have 13 moles of NaCl and want to use all of it to prepare a 0.25 M solution, how much water do you need as your solvent?
4. What is the concentration of a solution that has 50 g of CuSO_{4} dissolved in 250 ml of water?
5. How many grams of lodine are required to prepare a $500 \mathrm{ml}, 0.2$ molar solution?

Section 3: Dilutions
Introduction video:
https://www.youtube.com/watch?v=QYK3Aj-IUIs

Diluting Solutions

Experiments often require a solution that is more dilute than what is on hand in the stockroom. In this case, a more concentrated stock solution must be diluted to obtain the desired concentration. To carry out a dilution, the following equation is used: Molarity concentrated soln X volume concentrated soln $=$ Molarity dilute soln X volume dilute soln

In this equation, Molarity concentrated soln is the concentration of the stock solution, volume concentrated soln is the volume of the stock solution required to prepare the dilute solution, Molarity dilute soln is the concentration of the desired dilute solution, and volume dilute soln is the volume of the dilute solution needed. The dilution equation is commonly written as shown in Equation 2. The subscripts 1 and 2 refer to the concentrated solution and the dilute solution, respectively.

$$
M_{1} V_{1}=M_{2} V_{2}
$$

Equation 2
This equation is derived from the idea that Molarity is given as mol/L, or $M=n / L$, but when rearranged, the formula appears as $n=M \times L$. This means that the moles present is determined by the concentration multiplied by the volume. The number of moles present will never change, only the volume and concentration will change. So if the initial amount of moles must equal the final amount of moles, then n_{1} (initial stock) $=$ n_{2} (final dilute).

When we substitute Molarity x Litres in for n, we get: $M_{1} V_{1}=M_{2} V_{2}$
For example, assume that the 0.80 M sodium chloride solution prepared in the example above is in the stockroom, but for another experiment, 100 mL of a 0.20 M sodium chloride solution is needed. In performing a dilution calculation, M_{1}, M_{2}, and V_{2} are generally known and Equation 2 is rearranged to solve for the unknown V_{1}.
Substituting the known values for this example into Equation 2 allows us to solve for the volume of the concentrated solution required to prepare the dilute solution.

$$
\mathrm{V}_{1}=\frac{\mathrm{M}_{2} \underline{V}_{2}}{\mathrm{M}_{1}} \quad \mathrm{~V}_{1}=\frac{0.20 \mathrm{M} * 100 \mathrm{~mL}}{0.80 \mathrm{M}}=\mathrm{V}_{1}=25 \mathrm{~mL}
$$

The following video summarizes how this is done:

FYI: Often times you may see the equation $\mathrm{M}_{1} \mathrm{~V}_{1}=\mathrm{M}_{2} \mathrm{~V}_{2}$ written as $\mathrm{C}_{1} \mathrm{~V}_{1}=\mathrm{C}_{2} \mathrm{~V}_{2}$ These two equations are synonymous and represent the exact same thing, one just uses the M variable for molarity, the other uses the C variable for concentration

Sample problem \#3

You have a stock solution of [18] HCl . For a lab that you are about to perform, you only require 50 ml of 6 Molar HCl . How much HCl from the stock solution is reuired?

Solution \#3

What we know:
\rightarrow initial concentrated stock solution $=18$ Molar $\quad \mathrm{M}_{1}$ value
\rightarrow final dilute solution concentration $=6$ Molar $\quad \mathrm{M}_{2}$ value
\rightarrow Final dilute solution volume $=50 \mathrm{ml}$
Missing:
\rightarrow initial volume required of $\mathrm{HCl} \ldots \mathrm{V}_{1}$
Step 1. Substitute known value into equation $\mathrm{M}_{1} \mathrm{~V}_{1}=\mathrm{M}_{2} \mathrm{~V}_{2}$ $18 \times V_{1}=6 \times 0.050 \mathrm{~L}$

Step 2. Rearrange to solve for V_{1}
$\mathrm{V}_{1}=\underset{\mathrm{M}_{1}}{\mathrm{M}_{2} \underline{\mathrm{~V}}_{2}} \quad \mathrm{~V}_{1}=\frac{6 \mathrm{M} * 0.050 \mathrm{~L}}{18 \mathrm{M}} \quad=\mathrm{V}_{1}=0.01666 \mathrm{~L}=16.7 \mathrm{ml}$ of stock solution required

Question: If the final solution needs to be 50 ml , but we only take 16.7 ml of the stock solution, where does the difference come from?

Answer: The 16.7 ml of 18 M solution is diluted to 6 M solution by adding 33.3 ml of water, thus reaching our final volume of 50 ml .

Sample problem \#4

If I add 25 ml of water to 125 ml of 0.15 M NaOH solution, what will the molarity of the dilute solution be?

Solution \#4

$$
\begin{aligned}
& \mathrm{V}_{2} \text { value is the final } \\
& \text { volume, so when } 25 \mathrm{ml} \text { is } \\
& \text { added to } 125 \mathrm{ml} \text {, the final } \\
& \text { volume becomes } 150 \mathrm{ml} \\
& 0.15 \mathrm{Mx} 0.125 \mathrm{~L}=\mathrm{M}_{2} \times 0.150 \mathrm{~L} \\
& 0.15 \mathrm{Mx} 0.125 \mathrm{~L}=\mathrm{M}_{2} \\
& 0.150 \text { L } \\
& 0.125 \mathrm{M}=\mathrm{M}_{2} \\
& \text { The final concentration of the dilute solution is } 0.125 \mathrm{M} \\
& \text { This video is a helpful tutorial on dilutions: https://www.youtube.com/watch?v=v6dnEp58mVk }
\end{aligned}
$$

Chemistry 11
 Name:
 Molarity/Dilutions Worksheet

1. Molarity Problems - Find the missing value.

Chemical	Mass	Volume	Molarity
(a) $\mathrm{Na}_{2} \mathrm{SO}_{4}$	16.0 g	50.0 mL	
(b) HCl	143.28 g	-	4.25 M
(c) $\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}$	-	150.0 mL	3.00 M

2. Dilution Problems

(a) 110.0 mL of 3.00 M sulfuric acid has 25.0 mL of water added to it. What is the resulting concentration of the solution?
(b) How much water must be added to 50.0 mL sample of 18.0 M nitric acid to give a resulting concentration of 0.250 M ?
(c) Barium nitrate is purchased as a 17.0 M concentration. Explain how you would prepare 500.0 mL of a 5.00 M solution.
(d) If 25.0 mL of $4.0 \mathrm{M} \mathrm{HNO}_{3}$ solution is diluted to a volume of 600.0 mL , what will be the molarity of the diluted solution?
(e) What initial volume of 18 M hydrochloric acid is required to make 2.0 L of 0.50 M hydrochloric acid solution?
(f) 250.0 mL of 0.20 M phosphoric acid is added to 1.00 L of water. What is the molarity of the resulting solution?

Formal Assignment to be Submitted

1. If 20 ml of 0.75 M HBr is diluted to a total volume of 90.0 ml , what is the molar concentration of the HBr in the resulting solution?
2. Concentrated HNO_{3} is 15.4 M . How would you prepare 2.50 L of $0.375 \mathrm{M} \mathrm{HNO}_{3}$?
3. A 400 ml solution contains 35 g of LiOH . It is then diluted with 250 ml of water. What is the resulting concentration?
4. A 750 ml solution of NaCl with unknown molarity is diluted down to create a 2 L batch of new solution. The new solution is tested and has its molarity determined to be 1.2 M . What was the initial concentration of the NaCl solution?
5. You are trying to prepare a standard 0.5 M solution of HCl , from a 12 M stock solution. If you have 750 ml of stock solution and plan to use all of it, how much water do you need to add to properly dilute the stock to the desired concentration?

Challenge Questions! (Still part of the assignment)

1. If 0.5 M NaCl in a 250 ml bottle is mixed with 1.2 L of 0.9 M NaCl . What is the resulting amount and concentration of the new NaCl solution?
2. If 300 ml of solution A contains 25 g of KCl and 250 ml of solution B contains 60 g of KCl , what is the molarity of the KCl solution resulting from mixing solutions A and B ?
