Calculations Involving Multiple Conversions and Introducing Molarity

Recall that the molar mass (M) of a substance is weight in grams of any compound per one mole value. The molar mass can be found by adding the atomic mass of all of the elements present in a compound. For example, the molar mass of of Hydrogen Peroxide $\left(\mathrm{H}_{2} \mathrm{O}_{2}\right)$ is as follows:

Hydrogen Peroxide $\rightarrow \mathrm{H}_{2} \mathrm{O}_{2}$

- Hydrogen has an atomic mass of 1.0, and in this specific compound, we have 2 hydrogen atoms
- Oxygen has an atomic mass of 16.0, and in this specific compound, we have 2 oxygen atoms
- Therefore, our total weight in grams is: $(2 \times 1.0)+(2 \times 16.0)=34.0$
- The molar mass of hydrogen peroxide is $34.0 \mathrm{~g} / \mathrm{mol}$

That means that in 1 mole of hydrogen peroxide, we have a mass of 34 grams.

Conversion Factors

1. There are 22.4 L of gas in 1 mole of any gas at STP

$$
\frac{22.4 \mathrm{~L}}{1 \mathrm{~mol}}
$$

2. There are 6.02×10^{23} particles in 1 mole of any substance

$$
\frac{6.02 \times 10^{23}}{1 \mathrm{~mol}}
$$

3. Molar Mass corresponds to the specific weight per 1 mole of a substance

$$
\frac{\text { specific weight in grams }}{1 \mathrm{~mol}}
$$

Practice.

1. Find the molar mass of copper (II) sulfate pentahydrate?
2. How many moles are in 132 g of carbon dioxide?
3. How many atoms are in 216 g of pure silver?
4. How many atoms are in 50 g of N_{2} ?
5. What is the mass of 200 molecules of methane?

Molarity
Molarity of a substance refers to the molar concentration. That is, the amount of a substance that is present in a given volume of solution. Solutions can be either concentrated (high molarity) or dilute (low molarity).

$$
C=\frac{n}{V}
$$

C = Molar concentration
$\mathrm{n}=$ number of moles
$\mathrm{V}=$ Volume in litres
C gives us an answer with units of mol/L, which is read as "Molar" For example, a 0.1 M solution contains 0.1 mol of a substance in 1 L of solution.

Example 1.
0.1 M of NaOH contains 0.1 mol in 1 L which is exactly 4.0 g of NaOH . We use square brackets to express "molar concentration of"

- 0.1 M solution
- $[\mathrm{NaOH}]=0.1 \mathrm{M}$
- The molarity of NaOH is 0.1 molar
- $\mathrm{C}=0.1 \mathrm{M}$

These values are all different ways of stating the same information!!
Example 2.
Find the molar concentration of a solution that contains 12 g of NaOH in 250 ml of solution.

Step 1. The molar mass of NaOH is $40 \mathrm{~g} / \mathrm{mol}$
Step 2. Find the number of moles: $12 \mathrm{~g} \times \frac{1 \mathrm{~mol}}{40 \mathrm{~g}}=0.3 \mathrm{~mol}$
Step 3. Find the amount of solution in litres: $250 \mathrm{ml} \times \frac{1 \mathrm{~L}}{1000 \mathrm{ml}}=0.25 \mathrm{~L}$
Step 4. Solve for molar concentration:
$C=\frac{n}{V} \quad C=\frac{0.3 \mathrm{~mol}}{0.25 \mathrm{~L}} \quad C=1.2 \mathrm{~mol} / \mathrm{L}$
The solution is 1.2 molar

Example 2.

Find the mass of KOH in 500 ml of 0.3 M solution.
$C=\frac{n}{V} \quad 0.3 M=\frac{n}{0.5 L} \quad \mathrm{n}=0.15 \mathrm{~mol}$
The molar mass of KOH is 56.1 g
$0.15 \mathrm{~mol} \times \frac{56.1 \mathrm{~g}}{1 \mathrm{~mol}}=8.42 \mathrm{~g}$
There are 8.42 grams in the solution.

Chemistry 11

Practice.

1. Find the molarity of a solution that is made by dissolving and diluting 30 g of NaOH in 1 L of solution.
2. Find the molarity of hydrochloric acid that has a density of $1.03 \mathrm{~g} / \mathrm{ml}$.
3. What is the molarity of pure sulfuric acid, $\mathrm{H}_{2} \mathrm{SO}_{4}$, having a density of $1.839 \mathrm{~g} / \mathrm{ml}$?
